Future Kaon Physics at Fermilab $K^+ \rightarrow \pi^+ \nu \ \overline{\nu}$ and more

Peter S. Cooper, Fermilab July 30, 2004

- I. Recent history.
- II. Physics goals and situation.
 New results from BNL E949
- III. A new technique and its challenges
- IV. Immediate plans
- V. Future Kaon Physics at Fermilab

CKM Status and how to proceed

- o CKM(E921) at Fermilab is an approved experiment to measure Br[K+ $\rightarrow \pi$ + $\nu \nu$] with 100 signal / <10 background in a high flux separated kaon beam at 22 GeV/c
- o P5 stops CKM Oct 2003

P5 judged CKM to be an elegant world class experiment which based on present budgetary models should not proceed.

- Adapt to an unseparated ~45 GeV/c beam in KTeV hall P940
 - Demonstration of μMegas in NA48 ® tracking in 230MHz tractable
 - Other 3 trackers unchanged (2 RICHes + Straws in vacuum)
 - Vetoing photons gets easier ($E_{\pi^0} > 1 \text{ GeV } \otimes > 7 \text{ GeV}$)
 - Accidental backgrounds?

Primary Physics Goal: Precision Measurement of Br[$K^+ \rightarrow \pi^+ \nu \bar{\nu}$]

This decay is determined by loop processes to high order in the SM, and hence has a reach for *new* physics at the EW scale and beyond.

The SM rate can be reliably calculated; hence any deviation in the measured rate is a signal for new physics.

Measuring $|V_{td}|$ with $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

o K⁺ $\rightarrow \pi^+ \nu \ \overline{\nu}$ is the best way to measure $|\mathbf{V}_{td}|$ in the Standard Model

- Structure of K⁺ controlled by measurement, NO final state interactions.
- Theoretical uncertainties are small (m_{charm}) and robustly estimated. (~8%)
- Need 100 signal events with <10 background (6%) to match theory error.

o Experimental Challenge

- Br[$K^+ \rightarrow \pi^+ \nu \nu$] = (8±1) x 10⁻¹¹ (Standard Model)
- 3 clean events seen in BNL787 /949 (Br = 15^{+13}_{-9} x 10^{-11})

o The tyranny of tiny decay rates

- •100 events / 10^{-10} (Br) / 1% (acc) = 10^{14} K decays must be studied
- •10⁷ sec/year \rightarrow 10⁷ K decay /sec to see 100 in 1 year
- Need to control background to 10⁻¹¹ of all K⁺ decays

Challenging the Standard Model of CP Violation

S

Consider the Quartet of "Golden Mode" measurements:

$$\sin(2\beta)$$
, $K^0 \rightarrow \pi^0 \nu \overline{\nu}$, $K^+ \rightarrow \pi^+ \nu \overline{\nu}$,

 $\Delta m_d / \Delta m_s$ in B_d^0 and B_s^0 Decays

$$\Gamma(\pi \nu \nu) = SM$$

expected sensitivities

CKM Fitter Results, D. Jaffe (BNL).

Hasn't B physics done it all already?

Who will measure orthogonal to $\sin 2\beta$? Bs/Bd mixing CDF /D0 / BTeV /LHCb But $\xi(\Delta m_s/\Delta m_d) = 1.15 \pm 0.05^{+0.12}_{-0.00}$? 1.25 ± 0.10

 B_s ? D_sK $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ BTeV / LHCb P940 / NA48-3

•hep-ph/0312259

 $B \to \pi \pi$, New Physics in $B \to \pi K$ and Implications for Rare K and B Decays

Andrzej J. Burss,* Robert Fleischer,* Stefan Rockniegel* and Felix Schwab**

Physik Department, Technische Universität Mitschen, D-88748 Gerching, Germany
 Theory Division, CEDN, CB-1211 General 25, Switzerland
 Max-Planck-Institut für Physik – Weiter-Beisenberg-Institut, D-80808 Mittich, Germany

Abstract

The measured $B\to \pi\pi_\pi\pi^K$ branching ratios adultst paraling patterns. We point out that the $B\to \pi\pi$ intentity can be useful assumed start in the Standard Model (SM) through non-factorizable backeter interference effects, whereas the $B\to \pi K$ system may indicate new physics (NP) in the electroweak (EW) perguin sector. Using the $B\to \pi\pi$ data and the SU(3) theore symmetry, we may fix the inchesions: $B\to \pi K$ parameters, which allows us to show that any currently observed feature of the $B\to \pi K$ system can be easily explained through enhanced EW programs with a large CPe infanting SP phase. Restricting correction in a pre-fix accentre, when NP outcomed through B^* programs, we describe that in care K and B decays, where an enhancement of the $K_+ \to \pi^+ \pi^+$ ratio by one order of magnitude, with BR($K_- \to \pi^+ \pi^+ \pi^-$) $> B2(K^* \to \pi^+ \pi^+)$, $B1(K_- \to \pi^+ \pi^+ \pi^-) = C(10^{-10})$, $(8\pi \pi^0)^{1/2} = 0$, and a large ferward-backward CD asymmetry in $B_+ \to K^+ \pi^+ \pi^-$, are the most spectratular effects. We address also other rate K and B decays, π^+ is and $B_+ \to K^- \pi^-$, are the most spectratular effects. We address also other rate K and B decays, π^+ is and $B_+ \to K^- \pi^-$.

- •hep-ph/0311353 Lepton flavor mixing and K® pn`n decays, Y. Grossman, G. Isidori, H. Murayama
- •hep-ph/0112135 K^{+} p^{+} **n** n a rising star on the stage of flavor physics, G. D'Ambrosio, G. Isidori •many more

New Physics sensitivity in

$$K^+ \rightarrow \pi^+ \nu \overline{\nu}$$

New CP violating physics

Other Physics Measurements

o π^+ decay physics

- $\Gamma[\pi^+ \to e^+ \nu(\gamma)] / \Gamma[\pi^+ \to \mu^+ \nu(\gamma)]$ is calculated to 0.05% in the SM
- Helicity suppresses the dominant V-A and IB amplitudes
- $\pi^+ \rightarrow e^+ v \gamma$ Dalitz plot access to non V-A terms in hadronic weak current
- An excellent place to search for models like leptoquarks, multiple Higg, etc.

o Other K⁺ decay physics

- All the other K decays studies from the CKM proposal remain
 - K_{e3} , K_{e4} , $K_{\mu 3}$, $K_{\mu 4}$, $K^{+} \rightarrow \pi^{+} e^{+} e^{-}$, $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$
 - Lepton flavor violation $K^+ \rightarrow \pi^- \mu^+ \mu^+$, etc.
 - T odd correlations in $K^+ \rightarrow \pi^+ l^+ \nu \gamma$
- $\Gamma[K^+ \rightarrow e^+ \nu(\gamma)] / \Gamma[K^+ \rightarrow \mu^+ \nu(\gamma)], K^+ \rightarrow e^+ \nu \gamma$ in parallel with pion decays

Changes in the physics situation

What's changed since the CKM approval in 2001?

- o Another $K^+ \rightarrow \pi^+ \nu \nu$ event from BNL E949 (see below).
- o B_s mixing isn't going to be measured at the SM level (17 ps⁻¹) soon.
- o Some unusual CP violation results are emerging at Belle
 - e.g. $B^0 \to \phi K_S^0$ asymmetries disagrees with ψK_S^0 (& K+K- K_S^0 , $\eta' K_S^0$)
- o Lack of 1st row unitarity ($\sim 2.5\sigma$) and new measurements of V_{us} resolved(?)
- o There is experimental evidence for non V-A terms in the pion hadronic weak current in $\pi^+ \to e^+ \nu \gamma$
 - 5 σ claim by PiBeta for tensor form-factor $F_T/F_V = -0.061 \pm 0.011$ hep-ex/0311013, hep-ex/0312029
 - ISTRA at IHEP also reported a non-zero tensor form-factor. Phys.Lett.**B243** (1990)308, hep-ph/0307166

New Results from BNL 949

- o K⁺ Decay at rest experiment with the BNL AGS% "proton blowtorch".
- oThird $K^+ \rightarrow \pi^+ \nu \nu$ event.
- o S/N ~ 1 :this event could be either signal or background
- o Combined E787 / E949 results

Br(
$$\pi^+ \nu \ \overline{\nu}$$
) = 1.5 $^{+1.3}_{-0.9}$) x 10⁻¹⁰
> 0.42 x' 10⁻¹⁰ 90% CL
< 3.22 x 10⁻¹⁰ 90% CL

o 10-20% of approved data. Further running unlikely.

$B(K^+ \rightarrow \pi^+ \nu \nu)$ and the Unitarity Triangle

- o Green lines show $B(K^+ \to \pi^+ \nu \nu)$ with theoretical uncertainty. Central value (dashed), 68% (dot-dashed), 90% (solid)'
- o Red ovals show 68%, 90%, 95% contours from other measurements V_{ub} , ε_K , $\sin{(2\beta)}$, Δm_d , $\Delta m_d/\Delta m_s$
- o Right figure doesn't include measurements dependent on B_d mixing (blue) '

Figure provided by Gino Isidori

How does this compare with recent CDF measurement of $\Delta\Gamma_s$ in B_s decay?

Experimental Technique

O High Flux Un-separated 37-53 GeV/c Beam - 4% K⁺

- Proton / π^+ : 120 / 100, 230 MHz total, 1x1 cm², 0.1x0.1 mRad²
- 10 MHz K⁺, 1.7 MHz decay in the acceptance.
- 5 x10¹² 120 GeV proton/sec in slow spill from the Main Injector to produce the required K⁺ beam (17% of design intensity)
- Debunched proton beam required (~10% 53MHz ripple ok).

Apparatus

- Decay in flight spectrometer with both velocity (RICH) and momentum (magnetic) spectrometer both both K^+ and π^+ .
- Significant requirements on photon vetoes
- All detector technologies used are well established
- Redundancy is critical to measure all backgrounds
- Exploit signal regions on both sides of $K^+ \to \pi^+ \pi^0$.

Apparatus

- o Decay in flight
- o Redundant high rate detectors and veto systems.
- o separated K+ beam at 22 GeV/c.

Un-separated + beam at 37-53 GeV

NA48 KABES data

Ring Imaging Cherenkov Counters

u C c K t **M**

- High rate high resolution
- Matched to momentum resolution
- O Based on successful Selex RICH
- Photo-detectors are individual PMTs

Simulated Spectrometer Performance

- Missing mass resolution for $M^2_{\pi^0}$ from $K^+ \to \pi^+ \pi^0$
- Matched resolution from momentum and velocity spectrometers
- Low non-Gaussian tails
- Uncorrelated measurements
 Backgrounds from Mis-measurements to be studied and quantified from the data
- Study needs to be redone for P940

Acceptance

- o Acceptance was re-evaluated. Decay fraction increased $13\% \rightarrow 16.5\%$
- o PNN2 acceptance limited to 1.4x PNN1 pending more serious background studies
- o Nearly identical sensitivity as CKM for same 120 GeV beam incident.

parameter	CKM	E921	
$K^+flux[MHz]$	30	10	
beam-sec/year	0.75×10^{7}	0.75×10^{7}	
years of data	2	2	
sensitive K decays	5.8×10^{13}	2.5×10^{13}	
nominal Branching ratio	1×10^{-10}	1×10^{-10}	
taxes (other losses)	-15%	-15%	
PNN1 (s+b)	$95 + \le 10$	$44 + \le 4$	
PNN2	$(130 + \le 40)$	$62+ \le 20$	
total	$95+ \le 10$	$106+\leq 24$	
Br precision	< 11%	< 12%	

Backgrounds Remaining

Background Source

Effective BR (x10⁻¹²)

•	K ⁺ -	\rightarrow	$\mu^{\scriptscriptstyle +}$	ν_{μ}
---	------------------	---------------	------------------------------	-------------

•
$$K^+ \rightarrow \pi^+ \pi^0$$

$$\bullet \quad K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \; \nu_{\mu} \; \gamma$$

•
$$K^+ A \rightarrow XK_L^0 \rightarrow \pi^+ e^- V$$

•
$$K^+A \rightarrow \pi^+X$$
 (trackers)

•
$$K^+A \rightarrow \pi^+X$$
 (gas)

CKM

Our plan

- o We are in the middle of this redesign now we need to:
 - Complete the unseparated beamline design for NM2
 - Assess KABES feasibility in a 230 MHz beam
 - Re-evaluate backgrounds from Kaon interaction in detectors
 - Estimate backgrounds from non-kaon interaction accidentals
 - Evaluate PNN2 cuts, acceptance and backgrounds
 - Re-assess losses from deadtime, reconstruction, ...

o Our Plan

- Complete the list above
- Have external technical review of the redesign (a-la CKM)
- Return to Fermilab and the PAC with a vetted re-design
- Time scale of months

Future Kaon Physics at Fermilab

- o Fermilab is planning a Proton Driver to increase fluxes by ~10x
 - Both an 8 GeV SCRF proton Linac and an 8/16 GeV high flux conventional synchrotron are under consideration.
 - Physics goals include sensitivity neutrino experiments, ...
 - •Time frame is the next decade (~2015)
- o High Sensitivity Kaon physics is a natural for this machine but
 - The Main Injector was sold on the same promise in ~1989
 - Save the KTeV 1999 run no kaon physics will be done in the first decade of main-injector operation
- o If Fermilab and US-HEP aren't interested in a kaon physics program for today, discussing one in a decade is fatuous.
- o CERN is considering the same experiment as NA48-3